AP Physics 2 - Chapters 13 and 14 Practice

Multiple Choice

Identify the choice that best completes the statement or answers the question.

 1.	The	speed of a 10	-kHz	sound wave in	n sea	water is approx	xima	tely 1 500 m/s	. Wh	at is its wavelength?
	a.	5.0 cm	b.	10 cm	c.	15 cm	d.	20 cm	e.	29 cm
 2.	Oce	an waves with	ı a w	avelength of 12	20 m	are coming in	at a	rate of 8 per m	ninute	e. What is their speed?
	a.	8.0 m/s	b.	16 m/s	c.	24 m/s	d.	30 m/s	e.	4.0 m/s
 3.	A p trav	iano string of els on the strin	dens: ng.	ity 0.005 0 kg/i	m is	under a tensior	n of 1	1 350 N. Find 1	the v	elocity with which a wave
	a.	260 m/s	b.	520 m/s	c.	1 040 m/s	d.	2 080 m/s	e.	4 160 m/s
 4.	If y	$= 0.02 \sin(30)$	x - 4	100 <i>t</i>) (SI units)	, the	frequency of the	he w	ave is		
	a.	30 Hz	b.	$15/\pi$ Hz	c.	$200/\pi$ Hz	d.	400 Hz	e.	800π Hz
 5.	The hea puls	e figure shows vy section is 1 se traveling in	a str 6 tin the l	ing which has nes as large as neavy section is	a hea that o s	avy section and of the light sec times the spo	a lig tion. eed c	ght section. Th When the strin of that same pu	e ma ng is lse ti	ss per unit length of the under tension, the speed of a vaveling in the light section.
	a.	$\frac{1}{16}$	b.	$\frac{1}{4}$	c.	$\frac{1}{2}$	d.	2	e.	4
 6.	Cal	culate the inte	nsity	level in dB of	a so	und wave that I	has a	in intensity of	15 ×	10^{-4} W/m^2 .
	a.	20	b.	200	c.	92	d.	9	e.	10
7.	Аj	et plane has a	soun	d level of 150	dB.	What is the int	ensit	y in W/m²?		
	a.	1	b.	100	c.	10	d.	1 000	e.	10 000
 8.	A c 500 car	ar approaches Hz. What is t ? (Assume the	a sta he fre velo	tionary police equency (in Hz city of sound in	car a z) hea n air	at 36 m/s. The f ard by an obser is 343 m/s.)	requ rver	ency of the sir in the moving	en (r car a	elative to the police car) is s he approaches the police
	a.	220	b.	448	c.	526	d.	552	e.	383
 9.	Wh hea	ile you are sou r the same free stay put	undin queno	ng a tone on a t acy that you hea	oy w ir eve	histle, you not en though she i	ice a s app awa	friend running proaching, you y from her at th	g tow mus	ard you. If you want her to t me speed
	u.	stay put.				v. Tull	ana	j nom ner at ti	ue ba	me speed.

b. run towards her at the same speed. d. stay put and play a note of higher frequenc

10. A friend hands you an equation sheet with the following equation for the Doppler effect: $f' = \frac{(v - v_0)}{(v + v_s)} f$. This

version of the equation is correct with signs as given only if

- a. the observer and source are approaching each other.
- b. the observer is approaching the source while the source is moving away from the observer.
- c. the observer is moving away from the source while the source is approaching the observer.
- d. the observer and source are moving away from each other.
- e. the observer and source are moving in perpendicular directions.
- 11. A string is stretched and fixed at both ends, 200 cm apart. If the density of the string is 0.015 g/cm, and its tension is 600 N, what is the wavelength (in cm) of the first harmonic?

12. Two point sources emit sound waves of 1.0-m wavelength. The sources, 2.0 m apart, as shown below, emit waves which are in phase with each other at the instant of emission. Where, along the line between the sources, are the waves out of phase with each other by π radians?

		\mathbf{s}_1				\mathbf{s}_2		
		¢	1		1	-• x		
		0	0.5	1.0	1.5	2.0		
a.	x = 0, 1.0 m, 2.0 m		c.	x = 0).25 m,	0.75 m,	, 1.25 m,	1.75 m
b.	x = 0.50 m, 1.5 m		d.	x = 0).75 m,	1.25 m		

13. Transverse waves $y_1 = A_1 \sin(k_1x - \omega_1 t)$ and $y_2 = A_2 \sin(k_2x - \omega_2 t)$, with $A_2 > A_1$, start at opposite ends of a long rope when t = 0. The magnitude of the maximum displacement, y, of the rope at any point is

a. $A_1 - A_2$. b. $A_2 - A_1$. c. $A_1 + A_2$. d. $(A_1 - A_2) \frac{k_1}{k_2}$.

The figure below shows wave crests after a stone is thrown into a pond.

14. Refer to the picture. The phase difference in radians between points A and C is

a. 0. b.
$$\frac{\pi}{2}$$
. c. π . d. $\frac{3\pi}{2}$. e. 2π

15. Refer to the picture. The phase difference in radians between points A and D is a. π . b. 2π . c. 3π . d. 4π . e. 5π . Name:

16. Two pulses are traveling towards each other at 10 cm/s on a long string at t = 0 s, as shown below.

Which diagram below correctly shows the shape of the string at 0.5 s?

AP Physics 2 - Chapters 13 and 14 Practice Answer Section

MULTIPLE CHOICE

- 1. C
- 2. B
- 3. B
- 4. C
- 5. B
- 6. C
- 7. D
- 8. D
- 9. C
- 10. D
- 11. B
- 12. D
- 13. C
- 14. E
- 15. C
- 16. B