Rotational Dynamics Lab #### **Procedure** Briefly, but completely, describe the procedure for this lab – and include a labeled sketch. #### **Data** | Disc Mass (M) | | |--------------------|--| | Disc Radius (R) | | | Tension Radius (r) | | | m _{hang} | α | |-------------------|---| а | T | τ | |---|---|---| ### **Graphs** Using appropriate scales, labels and units, graph τ vs α . Draw a best-fits line. ## Questions - 1) Using the moment of inertia definition and calculus, *derive* the equation for the moment of inertia for the disc in terms of *M* and *R*. Then, use your measurements to calculate the value *I*_{disc}. - 2) Use a rotational-linear relationship to find a. Use a FBD for the hanging mass to derive an equation for Tension (T). Fill in your data table and show one example of your work. - 3) Derive an equation for Torque (τ) in terms of T and r. Fill in your data table and show one example of your calculation. - 4) Find the equation of your best-fits line. Use your answer to find an experimental value for I_{disc} . Show your work. - 5) Use your calculated value for the moment of inertia for the disc from #1 as the accepted value, and find the percent error for your experimental value from #4. ## **Error Analysis** Thoroughly explain what the main sources of error are for this lab, and how you would correct them.