<u>Chapter 7 – Problem Day</u>

6. A bead with mass 1.8×10^{-2} kg is moving along a wire in the positive direction of an *x*-axis. Beginning at time t = 0, when the bead passes through x = 0 with speed 12 m/s, a constant force acts on the bead. The figure indicates the bead's position at times $t_0 = 0s$, $t_1 = 1s$, $t_2 = 2s$, and $t_3 = 3s$. The bead momentarily stops at $t_3 = 3s$. What is the kinetic energy of the bead at t = 10 s?

15. A 12.0 N force with a fixed orientation does work on a particle as the particle moves through displacement $\vec{d} = (2m)\hat{i} - (4m)\hat{j} + (3m)\hat{k}$. What is the angle between the force and the displacement if the change in the particle's kinetic energy is (a) +30.0 J and (b) -30.0 J?

21. In the figure, a constant force \vec{F}_{ω} of magnitude 82.0 N is applied to a 3.00 kg shoebox at angle $\phi = 53^{\circ}$, causing the box to move up a frictionless ramp at constant speed. How much work is done on the box by \vec{F}_{ω} when the box has moved through vertical distance h = 0.15m?

41. A force $\vec{F} = (cx - 3x^2)\hat{i}$ acts on a particle as the particle moves along an *x*-axis. At x = 0, the particle's kinetic energy is 20.0 J; at x = 3 m, it is 11.0 J. Find *c*.

48. (a) At a certain instant, a particle-like object is acted on by a force $\vec{F} = (4N)\hat{i} - (2N)\hat{j} + (9N)\hat{k}$ while the object's velocity is $\vec{v} = -(2\gamma_i)\hat{i} + (4\gamma_i)\hat{k}$. What is the instantaneous rate at which the force does work on the object? (b) At some other time, the velocity consists of only a *y* component. If the force is unchanged and the instantaneous power is -12 W, what is the velocity of the object?

Chapter 7 Answers

5a) 5b)	$1 + \sqrt{2} = 2.41 \text{ m/s}$ 2 + 2 $\sqrt{2} = 4.82 \text{ m/s}$
11a) 11b) 11c) 11d) 11e) 11f)	-170 N 342.25 m -58,182.5 J -340 N 171.125 m -58,182.5 J
16)	15.3 J
19a) 19b) 19c) 19d)	$-\frac{3}{4}Mgd$ $\frac{Mgd}{4}Mgd$ $\sqrt{\frac{1}{2}gd}$
24a) 24b) 24c)	8840 J 7840 J 6840 J
26)	1250 J
32a) 32b)	8 N 8 N/m
37)	528 J
42)	41.7 J
45a) 45b) 45c) 45d)	0.83 J 2.5 J 4.2 J 5 W
47)	735 W

52)
$$-\frac{T}{3P}dP$$