\qquad Class: \qquad
\qquad

AP Physics 2-Chapter 17-18 Practice

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Determine the equivalent capacitance of the combination shown when $C=45 \mu \mathrm{~F}$.

a. $\quad 36 \mu \mathrm{~F}$
b. $\quad 32 \mu \mathrm{~F}$
c. $\quad 34 \mu \mathrm{~F}$
d. $\quad 30 \mu \mathrm{~F}$
e. $\quad 38 \mu \mathrm{~F}$
\qquad 2. Determine the energy stored in C_{2} when $C_{1}=15 \mu \mathrm{~F}, C_{2}=10 \mu \mathrm{~F}, C_{3}=20 \mu \mathrm{~F}$, and $V_{0}=18 \mathrm{~V}$.

a. $\quad 0.72 \mathrm{~mJ}$
b. $\quad 0.32 \mathrm{~mJ}$
c. $\quad 0.50 \mathrm{~mJ}$
d. 0.18 mJ
e. $\quad 1.60 \mathrm{~mJ}$
\qquad 3. Determine the energy stored by C_{4} when $C_{1}=20 \mu \mathrm{~F}, C_{2}=10 \mu \mathrm{~F}, C_{3}=14 \mu \mathrm{~F}, C_{4}=30 \mu \mathrm{~F}$, and $V_{0}=45 \mathrm{~V}$.

a. $\quad 3.8 \mathrm{~mJ}$
b. $\quad 2.7 \mathrm{~mJ}$
c. $\quad 3.2 \mathrm{~mJ}$
d. $\quad 2.2 \mathrm{~mJ}$
e. $\quad 8.1 \mathrm{~mJ}$
\qquad 4. Determine the charge stored by C_{1} when $C_{1}=20 \mu \mathrm{~F}, C_{2}=10 \mu \mathrm{~F}, C_{3}=30 \mu \mathrm{~F}$, and $V_{0}=18 \mathrm{~V}$.

a. $\quad 0.37 \mathrm{mC}$
b. $\quad 0.24 \mathrm{mC}$
c. $\quad 0.32 \mathrm{mC}$
d. $\quad 0.40 \mathrm{mC}$
e. $\quad 0.50 \mathrm{mC}$
\qquad 5. If $V_{\mathrm{A}}-V_{\mathrm{B}}=50 \mathrm{~V}$, how much energy is stored in the $36-\mu \mathrm{F}$ capacitor?

a. $\quad 50 \mathrm{~mJ}$
b. 28 mJ
c. $\quad 13 \mathrm{~mJ}$
d. $\quad 8.9 \mathrm{~mJ}$
e. 17 mJ
6. A parallel plate capacitor of capacitance C_{0} has plates of area A with separation d between them. When it is connected to a battery of voltage V_{0}, it has charge of magnitude Q_{0} on its plates. It is then disconnected from the battery and the plates are pulled apart to a separation $2 d$ without discharging them. After the plates are $2 d$ apart, the new capacitance and the potential difference between the plates are
a. $\frac{1}{2} C_{0}, \frac{1}{2} V_{0}$
b. $\frac{1}{2} C_{0}, V_{0}$
c. $\frac{1}{2} C_{0}, 2 V_{0}$
d. $\quad C_{0}, 2 V_{0}$
e. $2 C_{0}, 2 V_{0}$
7. A parallel plate capacitor of capacitance C_{0} has plates of area A with separation d between them. When it is connected to a battery of voltage V_{0}, it has charge of magnitude Q_{0} on its plates. It is then disconnected from the battery and the space between the plates is filled with a material of dielectric constant 3 . After the dielectric is added, the magnitudes of the charge on the plates and the potential difference between them are
a. $\frac{1}{3} Q_{0}, \frac{1}{3} V_{0}$.
b. $\quad Q_{0}, \frac{1}{3} V_{0}$.
c. Q_{0}, V_{0}.
d. $Q_{0}, 3 V_{0}$.
e. $3 Q_{0}, 3 V_{0}$.
\qquad 8. A parallel plate capacitor of capacitance C_{0} has plates of area A with separation d between them. When it is connected to a battery of voltage V_{0}, it has charge of magnitude Q_{0} on its plates. It is then disconnected from the battery and the space between the plates is filled with a material of dielectric constant 3 . After the dielectric is added, the magnitudes of the capacitance and the potential difference between the plates are
a. $\frac{1}{3} C_{0}, \frac{1}{3} V_{0}$.
b. $\quad C_{0}, \frac{1}{3} V_{0}$.
c. $\quad C_{0}, V_{0}$.
d. $3 C_{0}, \frac{1}{3} V_{0}$.
e. $3 C_{0}, 3 V_{0}$.
9. An electric heater is constructed by applying a potential difference of 110 V across a wire with a resistance of 5.0Ω. What is the power rating of the heater?
a. $\quad 2.0 \mathrm{~kW}$
b. $\quad 2.4 \mathrm{~kW}$
c. $\quad 1.7 \mathrm{~kW}$
d. $\quad 1.5 \mathrm{~kW}$
e. $\quad 60 \mathrm{~kW}$
10. A conductor of radius r, length ℓ and resistivity ρ has resistance R. What is the new resistance if it is stretched to 4 times its original length?
a. $\frac{1}{16} R$
b. $\frac{1}{4} R$
c. $\quad R$
d. $4 R$
e. $16 R$
11. A small bulb is rated at 7.5 W when operated at 125 V . Its resistance (in ohms) is
a. 0.45 .
b. 7.5.
c. 17.
d. 940.
e. 2100 .
12. At what rate is thermal energy generated in the $30-\Omega$ resistor?

a. 20 W
b. $\quad 27 \mathrm{~W}$
c. 60 W
d. 13 W
e. 30 W
13. What is the current in the $10-\Omega$ resistor ?

a. $\quad 0.60 \mathrm{~A}$
b. $\quad 3.0 \mathrm{~A}$
c. $\quad 1.2 \mathrm{~A}$
d. $\quad 2.4 \mathrm{~A}$
e. $\quad 0.30 \mathrm{~A}$
14. When a $20-\mathrm{V}$ emf is placed across two resistors in series, a current of 2.0 A is present in each of the resistors. When the same emf is placed across the same two resistors in parallel, the current through the emf is 10 A . What is the magnitude of the greater of the two resistances?
a. 7.2Ω
b. 7.6Ω
c. 6.9Ω
d. 8.0Ω
e. 2.8Ω
15. Determine ε when $I=0.50 \mathrm{~A}$ and $R=12 \Omega$.

a. 12 V
b. $\quad 24 \mathrm{~V}$
c. 30 V
d. 15 V
e. 6.0 V
16. What is the potential difference $V_{\mathrm{B}}-V_{\mathrm{A}}$ when the $I=1.5 \mathrm{~A}$ in the circuit segment below?

a. +22 V
b. -22 V
c. -38 V
d. $\quad+38 \mathrm{~V}$
e. +2.0 V
17. If $I=0.40 \mathrm{~A}$ in the circuit segment shown below, what is the potential difference $V_{\mathrm{a}}-V_{\mathrm{b}}$?

a. 31 V
b. 28 V
c. 25 V
d. $\quad 34 \mathrm{~V}$
e. 10 V
18. What is the equivalent resistance between points a and b ?

a. 14Ω
b. 8.0Ω
c. 6.0Ω
d. 25Ω
e. 40Ω
19. If 480 C pass through a $4.0-\Omega$ resistor in 10 min , what is the potential difference across the resistor?
a. $\quad 3.6 \mathrm{~V}$
b. $\quad 2.8 \mathrm{~V}$
c. $\quad 2.4 \mathrm{~V}$
d. 3.2 V
e. $\quad 5.0 \mathrm{~V}$
20. The circuit below contains three 100 -watt light bulbs. The emf $\varepsilon=110 \mathrm{~V}$. Which light bulb(s) is(are) the brightest?

a. A
c. C
e. All are equally bright.

AP Physics 2-Chapter 17-18 Practice

Answer Section

MULTIPLE CHOICE

1. D
2. D
3. D
4. B
5. D
6. C
7. B
8. D
9. B
10. E
11. E
12. D
13. A
14. A
15. B
16. B
17. C
18. D
19. D
20. A
