\qquad
\qquad
\qquad

AP Physics 2 - Ch 16 Practice

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. A $+15-\mathrm{nC}$ point charge is placed on the x axis at $x=1.5 \mathrm{~m}$, and a $-20-\mathrm{nC}$ charge is placed on the y axis at $y=$ -2.0 m . What is the magnitude of the electric field at the origin?
a. $\quad 105 \mathrm{~N} / \mathrm{C}$
b. $\quad 15 \mathrm{~N} / \mathrm{C}$
c. $75 \mathrm{~N} / \mathrm{C}$
d. $45 \mathrm{~N} / \mathrm{C}$
e. $60 \mathrm{~N} / \mathrm{C}$
2. A $+20-\mathrm{nC}$ point charge is placed on the x axis at $x=2.0 \mathrm{~m}$, and a $-25-\mathrm{nC}$ point charge is placed on the y axis at $y=-3.0 \mathrm{~m}$. What is the direction of the electric field at the origin?
a. 209°
b. 61°
c. 29°
d. 241°
e. 151°
3. A $40-\mu \mathrm{C}$ charge is positioned on the x axis at $x=4.0 \mathrm{~cm}$. Where should a $-60-\mu \mathrm{C}$ charge be placed to produce a net electric field of zero at the origin?
a. $\quad-5.3 \mathrm{~cm}$
b. 5.7 cm
c. $\quad 4.9 \mathrm{~cm}$
d. -6.0 cm
e. +6.0 cm
4. A particle $\left(\mathrm{m}=6.7 \times 10^{-27} \mathrm{~kg}\right.$, charge $\left.=3.2 \times 10^{-19} \mathrm{C}\right)$ moves along the $+x$ axis with a speed of $4.8 \times 10^{5} \mathrm{~m} / \mathrm{s}$. It enters a region of uniform electric field parallel to its motion and comes to rest after moving 2.0 m into the field. What is the magnitude of the electric field?
a. $\quad 2.0 \mathrm{kN} / \mathrm{C}$
b. $\quad 1.5 \mathrm{kN} / \mathrm{C}$
c. $\quad 1.2 \mathrm{kN} / \mathrm{C}$
d. $\quad 3.5 \mathrm{kN} / \mathrm{C}$
e. $\quad 2.4 \mathrm{kN} / \mathrm{C}$
5. A proton (mass $=1.67 \times 10^{-27} \mathrm{~kg}$, charge $=1.60 \times 10^{-19} \mathrm{C}$) moves from point A to point B under the influence of an electrostatic force only. At point A the proton moves with a speed of $50 \mathrm{~km} / \mathrm{s}$. At point B the speed of the proton is $80 \mathrm{~km} / \mathrm{s}$. Determine the potential difference $V_{\mathrm{B}}-V_{\mathrm{A}}$.
a. +20 V
b. -20 V
c. $\quad-27 \mathrm{~V}$
d. +27 V
e. $\quad-40 \mathrm{~V}$
6. An electron ($m=9.1 \times 10^{-31} \mathrm{~kg}, q=-1.6 \times 10^{-19} \mathrm{C}$) starts from rest at point A and has a speed of 5.0×10^{6} m / s at point B . Only electric forces act on it during this motion. Determine the electric potential difference V_{A} $-V_{\mathrm{B}}$.
a. -71 V
b. $\quad+71 \mathrm{~V}$
c. -26 V
d. +26 V
e. -140 V
7. If $a=30 \mathrm{~cm}, b=20 \mathrm{~cm}, q=+2.0 \mathrm{nC}$, and $Q=-3.0 \mathrm{nC}$ in the figure, what is the potential difference $V_{\mathrm{A}}-V_{\mathrm{B}}$?

a. $\quad+60 \mathrm{~V}$
b. $\quad+72 \mathrm{~V}$
c. +84 V
d. +96 V
e. +48 V
8. Identical $2.0-\mu \mathrm{C}$ charges are located on the vertices of a square with sides that are 2.0 m in length. Determine the electric potential (relative to zero at infinity) at the center of the square.
a. $\quad 38 \mathrm{kV}$
b. 51 kV
c. 76 kV
d. $\quad 64 \mathrm{kV}$
e. $\quad 13 \mathrm{kV}$
9. Four identical point charges $(+4.0 \mu \mathrm{C})$ are placed at the corners of a square which has $20-\mathrm{cm}$ sides. How much work is required to assemble this charge arrangement starting with each of the charges a very large distance from any of the other charges?
a. +2.9 J
b. +3.9 J
c. +2.2 J
d. $\quad+4.3 \mathrm{~J}$
e. +1.9 J
10. Through what potential difference must an electron (starting from rest) be accelerated if it is to reach a speed of $3.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$?
a. $\quad 5.8 \mathrm{kV}$
b. $\quad 2.6 \mathrm{kV}$
c. $\quad 7.1 \mathrm{kV}$
d. $\quad 8.6 \mathrm{kV}$
e. $\quad 5.1 \mathrm{kV}$

AP Physics 2-Ch 16 Practice

Answer Section

MULTIPLE CHOICE

1. C
2. A
3. C
4. C
5. B
6. A
7. A
8. B
9. B
10. B
