Name:
 Date:

AP Physics 2 - Chapter 10 Practice

Multiple Choice

Identify the choice that best completes the statement or answers the question.

 1.	A pressure of 10.0 mm Hg is measured at the triple-point of water using a constant-volume gas thermometer. What will the pressure be (in mm Hg) at 50.0° C?							
	a. 68.3 b	. 1.80	с.	31.8	d.	11.8	e.	8.50
 2.	A thermometer regis to on the Kelvin Sca a. 453 b	ters a change in le? . 328	temp c.	perature of 100 180	°F. V d.	What change in 55.6	tem e.	perature does this correspond 24.5
 3.	Two thermometers a temperature (in kelvi a. 218.15 b	re calibrated, on ins) do their read . 233.15	e in o lings c.	degrees Celsius measure the sa 273.15	s and ame t d.	the other in detemperature? 40.15	egree e.	es Fahrenheit. At what
 4.	A bridge is made with how much spacing (if a. 10 b	th segments of contract of con	oncre to al c.	ete 50 m long. llow for expans 7.5	If the sion o d.	e linear expans during an extre 5.0	ion c me t e.	coefficient is 12×10^{-6} (°C) ⁻¹ , emperature change of 150° F? 9.5
 5.	An auditorium has d atmosphere and 0° C a. 2.7×10^2 b	imensions 10 m ? . 2.7 × 10 ⁴	× 10 c.	$m \times 60 m$. Ho 2.7×10^3	w ma d.	any moles of a 2.7×10^5	ir fill e.	1 this volume at one 2.7×10^6
 6.	One mole of an ideal doubled, the final ter a. 174 b	l gas has a tempe nperature (in °C . 596	eratu () wil c.	re of 25°C. If t ll be 50	he vo d.	olume is held c 323	onst e.	ant and the pressure is 25
 7.	Two identical contain pressure of A then ded decreases by a half. The formation $T_{\rm A} = 0.5T_{\rm B} = T_{\rm o}.$ b. $T_{\rm B} = 0.5T_{\rm A} = T_{\rm o}.$	ners, A and B, he ecreases by a hal Which statement c. d.	old e f wh t corr $T_{\rm B} =$ $T_{\rm A} =$	qual amounts of ile its volume of rectly describes $T_A = T_o$. $2T_B = T_o$.	of the loub the	e same ideal ga les; the pressure temperatures of e. $T_{\rm B} = 22$	s at the of the $T_A =$	the same P_{o} , V_{o} and T_{o} . The <i>B</i> doubles while its volume e gases after the changes? T_{o} .

Name:

- 8. A square plate has an area of 29.00 cm² at 20.0°C. It will be used in a low temperature experiment at T = 10.0K where it must have an area of 28.00 cm². What area must be removed form the plate at 20.0°C for it to have the correct area at 10.0 K? (The coefficient of linear expansion is 10×10^{-6} (°C)⁻¹.) a. 0.079 3 cm² b. 0.159 cm² c. 0.238 cm² d. 0.841 cm² e. 0.921 cm²
 - 9. A container having a volume of 1.0 m³ holds 5.0 moles of helium gas at 50°C. If the helium behaves like an ideal gas, the total energy of the system is
 a. 2.0 × 10⁴ J.
 b. 2.5 × 10⁴ J.
 c. 1.7 × 10³ J.
 d. 1.5 × 10³ J.
 e. 4.0 × 10⁴ J.
- 10. The average kinetic energy of a nitrogen molecule at room temperature (20°C) is a. 2×10^{-21} J. b. 4×10^{-21} J. c. 6×10^{-21} J. d. 8×10^{-21} J. e. 1×10^{-20} J.
- 11. The average translational speed of a nitrogen molecule at room temperature (20 °C) is approximately (in m/s)a. 100.b. 500.c. 300.d. 700.e. 200.
- 12. The internal energy of *n* moles of an ideal gas depends on
 a. one state variable *T*.
 b. two state variables *T* and *V*.
 c. two state variables *T* and *P*.

13. The average molecular translational kinetic energy of a molecule in an ideal gas is a. $\frac{3}{2}k_{\rm B}T$. b. $\frac{3}{2}RT$. c. $\frac{5}{2}k_{\rm B}T$. d. $\frac{5}{2}RT$.

- 14. Which statement below is *NOT* an assumption made in the molecular model of an ideal gas?
 - a. The separation between molecules is large compared with the size of the molecules.
 - b. The molecules undergo inelastic collisions with one another.
 - c. The forces between molecules are short range.
 - d. The molecules obey Newton's laws of motion.
 - e. Any molecule can move in any direction with equal probability.
- _____ 15. The temperature of a quantity of an ideal gas is
 - a. one measure of its ability to transfer thermal energy to another body.
 - b. proportional to the average molecular kinetic energy of the molecules.
 - c. proportional to the internal energy of the gas.
 - d. correctly described by all the statements above.
 - e. correctly described only by (a) and (b) above.

AP Physics 2 - Chapter 10 Practice Answer Section

MULTIPLE CHOICE

- 1. D
- 2. D
- 3. B
- 4. D
- 5. D
- 6. D
- 7. C
- 8. D
- 9. A
- 10. E
- 11. B
- 12. A
- 13. A
- 14. B
- 15. D